# Statistical Models for Time Use Data: <br> An Application to Housework and Childcare Activities Using the Austrian Time Use Surveys from 1992 and 2008 

Master Thesis, University of Vienna

Bernhard Hammer

November 8, 2012

## Objectives

1. Analyzing changes in the time use of men and women for housework and childcare between 1992 and 2008
2. Evaluating statistical models for time use data:

- Linear model
- Tobit model for censored data
- GLM with a negative binomial distribution
- GLM with a Poisson-gamma distribution


## Time use for household work: What should we expect?

Most of the research based on the Multinational Time Use Survey containing time use surveys from 1960-

For women:

- Housework: Strong decline
- Paid work: Increase
- Childcare: Increase


## For men:

- Housework: Constant/slightly increasing
- Paid work: Constant/decline
- Childcare: Increase (from a very low level)


## Why expecting changes between 1992 and 2008?

- Increase in the labour force participation of women
- age-group 25-54: 67.1\% in 1992, 81.5\% in 2008
- Increase in public child care enrolment:
- 3 year old: $29 \%$ in $1992,53 \%$ in 2008;
- 4-5 year old: $75 \%$ in 1992, $90 \%$ in 2008;
- Introduction of parental leave for fathers (1990). Share of men on parental leave: 1990: 0.18\%, 2001: $2 \%, 2012$ : $<5 \%$
- Attitudes towards gender-roles became more egalitarian
- Ganze Männer machen Halbe-Halbe (Full men share half-half) Campaign for an obligation spouses to an equal division of household work by law (1996)


## Austrian Time Use Surveys

- 1992: 25,233 individuals in 12,169 households
- 2008: 8,234 individuals in 4,757 households
- Time diaries from all household members older than 10
- 15 minutes times-slots from 5:00 to 23:00
- 30 minute time-slots from 23:00 to 5:00


## The Subsample

The analysis is restricted to a subsample, focus is on working age adults:

- $15<$ Age $<55$
- children of household head or her/his partner are excluded
- Sample size: 11,733 in 1992 and 4,155 in 2008


## Household Structure

Table: Household Structure

|  | 1992 | 2008 |
| :--- | :---: | :---: |
|  | Share in \% | Share in \% |
| Single households | 14.5 | 27.8 |
| Couples with children | 49.1 | 43.2 |
| Couples without children | 13.5 | 15.4 |
| Single parents | 7.0 | 6.4 |
| Other | 15.9 | 7.2 |
| Total | $\mathbf{1 0 0 . 0}$ | $\mathbf{1 0 0 . 0}$ |
|  |  |  |
| Average Household Size | 3.20 | 2.65 |

## Time Use for Housework and Childcare

Table: Time Use for Housework in Minutes per Day

|  | Men |  | Women |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $\mathbf{1 9 9 2}$ | $\mathbf{2 0 0 8}$ | $\mathbf{1 9 9 2}$ | $\mathbf{2 0 0 8}$ |
| Single households | 92 | 102 | 161 | 132 |
| Couples with children | 93 | 102 | 347 | 250 |
| Couples without children | 99 | 107 | 230 | 177 |
| Single parents | 160 |  | 262 | 202 |
| Other households | 87 | 83 | 29 | 193 |
| Total | $\mathbf{9 3}$ | $\mathbf{1 0 2}$ | $\mathbf{2 9 9}$ | $\mathbf{2 0 9}$ |

Table: Time Use for Childcare in Minutes per Day

|  | Men |  | Women |  |
| :--- | :---: | :---: | :---: | :---: |
|  | 1992 | 2008 | 1992 | 2008 |
| Couple households | 38 | 70 | 114 | 137 |
| Single parents |  |  | 96 | 116 |

## Statistical Models - Hypotheses

- Relationship between factors other than sex and household type and time use for housework and childcare.
- Men in 2008 devote significantly more time to housework and childcare than in 1992. This holds after controlling for other characteristics such as education, age, or the number of children.


## Characteristics of Time Use Data

- Non-negativity
- Frequent observation of zeros
- Skewness

The data generating process depends on the activity and the subpopulation under investigation.

## Empirical Density of Time Devoted Housework

Figure: Time Devoted to Housework by Couples with Children: Empirical Density


Housework Men

Housework Women

## A Linear Model for the Housework

Minutes used for housework on the survey day $=$

$$
=\text { const. }+\beta_{1} * \text { year } 2008+
$$

$$
+\beta_{2} * \text { upper secondary }+\beta_{3} * \text { tertiary }+
$$

$$
+\beta_{4} * \text { age }+\beta_{5} * \text { year 2008*age }+
$$

$+\beta_{6} *$ household size $+\beta_{7} *$ no. of children below $6+$ $+\beta_{8} *$ living in city $+\beta_{9} *$ partner is working $+\epsilon$

## Results: Linear Model for Housework

Table: Housework: Results from the Linear Model, Couples with Children

|  | Housework Men | Housework Women |
| :--- | :---: | :---: |
| Year 2008 | -11.57 | $-96.57^{* * *}$ |
| Upper Secondary (Matura) | -8.249 | $-45.36^{* * *}$ |
| Tertiary Education | -1.509 | $-72.41^{* * *}$ |
| Age | 0.431 | $2.8011^{* * *}$ |
| Age*Year 2008 | 0.686 | 0.157 |
| Household Size | 0.483 | $32.92^{* * *}$ |
| Number of Children below 6 | -3.550 | $10.20^{* *}$ |
| Living in City | -1.027 | $-27.96^{* * *}$ |
| Partner is Employed | -0.0914 | $16.52^{* *}$ |
| Constant | $65.71^{* * *}$ | $112.2^{* * *}$ |
| Observations | 4,068 | 4,715 |
| R-squared | 0.006 | 0.139 |
| Standard errors in parentheses; *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,^{*} \mathrm{p}<0.1$ |  |  |

## Residual Analysis of the Linear Model for Housework

Residuals Men


Q-Q Plot Women


Theoretical Quantiles Standard Normal

Residuals Women


Women; Predicted vs. Residuals


Housework in Minutes

## Generalized Linear Models

Basic idea: Model the expectation $\mathrm{E}\left[\mathrm{Y} \mid \mathrm{X}_{\mathrm{i}}\right]=\mu_{i}$ and assume a (conditional) distribution for $Y$ given $\mu_{i}$

Advantage: We can choose a distribution which is non-negative, right skewed, has a point-mass at zero and where the variance depends on the mean.

Components of GLM:

- The distribution of $Y$ given $\mu_{i}$, which is called the random component
- The second component is the linear predictor $\eta_{i}=\sum_{j=1}^{k} x_{i j} \beta_{j}$
- The third component is the link function $g\left(\mu_{i}\right)=\eta_{i}$ e.g. $\log \left(\mu_{i}\right)=\eta_{i}$
We use a Poisson-gamma distribution with a log-link.


## GLM with a Poisson-Gamma Distribution

Judith Brown and Peter Dunn (2011). Comparisons of Tobit, Linear, and Poisson-Gamma Regression Models: An Application of Time Use Data

Structure of the data:

- Several episodes of different length
- Model for the number of episodes N: Poisson process
- Model for the duration: Gamma distribution
$Y=\sum_{i=1}^{N} Z_{i}$. The sum $Y$ represents the total time spent in this activity on a certain day and follows a Poisson-gamma distribution.


## Exponential Dispersion Models: Tweedie Distributions

The density of exponential dispersion models:

$$
\begin{equation*}
f(y ; \theta, \phi)=c(y, \phi) \exp \left\{\frac{y \theta-\kappa(\theta)}{\phi}\right\} . \tag{2}
\end{equation*}
$$

These models have a unique variance function $V(\mu)$ for fixed $\phi$.
Tweedie distributions: $V(\mu)=\mu^{p}, p \notin(0,1)$;
Examples: Normal distribution $(p=0)$, the Poisson distribution ( $p=1$ ), gamma distribution $(p=2)$.

Tweedie distributions with $p \in(1,2)$ correspond to
Poisson-gamma distributions

## Fitted Poisson-Gamma Distribution

Housework Men 2008


Housework Women 2008


## Estimation

GLM with a Tweedie distribution:
R-package statmod; function glm(,family=tweedie())
You have to specify the power $p$ of the Poisson-gamma (resp. Tweedie-) variance function!

Estimation of $p$ : Function tweedie.profile() from the R-package tweedie.

## Empirical Density: Childcare

Figure: Density Childcare


Childcare Men

Childcare Women

## Linear Predictor for the Childcare

$\log (\mu)=$ const. $+\beta_{1} *$ year $2008+$

$$
\begin{aligned}
& +\beta_{2} * \text { upper secondary }+\beta_{3} * \text { tertiary }+ \\
& +\beta_{4} * \text { age }+\beta_{5} * \text { year 2008*age }+
\end{aligned}
$$

$+\beta_{6} *$ no. children below $10+\beta_{7} *$ no. of children aged $0-2+$
$+\beta_{8} *$ no. of children aged 3-5 +
$+\beta_{9} *$ living in city $+\beta_{10} *$ partner is working

## Results: Poisson-Gamma for Childcare

Table: Childcare: Results from the Poisson-Gamma Model

|  | (Childcare Men) | (Childcare Women) |
| :--- | :---: | :---: |
| (Intercept) | $1.389^{* * *}$ | $2.216^{* * *}$ |
| Year 2008 | 0.013 | -0.273 |
| Upper Secondary (Matura) | 0.018 | $0.094^{*}$ |
| Tertiary | $0.297^{* *}$ | $0.169^{* * *}$ |
| Age | $-0.031^{* * *}$ | $-0.021^{* * *}$ |
| Age*Year 2008 | 0.018 | $0.013^{*}$ |
| No. Children below 10 | -0.028 | 0.054 |
| No. Chilldren aged 0-2 | $0.950^{* * *}$ | $0.775^{* * *}$ |
| No. Children aged 3-5 | $0.323^{* * *}$ | $0.213^{* * *}$ |
| Living in City | $0.368^{* * *}$ | 0.064 |
| Partner is Working | $0.193^{* *}$ | $0.169^{* *}$ |
| N | 2112 | 2332 |

## Model Evaluation

Figure: Childcare: Quantile Plots for the Poisson-Gamma Model


Quantile Residuals Women


## Conclusion

Changes in time use for housework:

- For women: Strong decline
- For men: No significant change; amount of housework independent of other individual characteristics

Changes in time use for childcare:

- Increase in averages; not significant after controling for other characteristics

Models for time use data:

- Dependent on the activity and the subpopulation under investigation
- GLM with a Poisson-gamma random component is a useful tool for time use data

